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We performed numerical experiments on a two-dimensional driven lattice gas, which constitutes a simple
stochastic nonequilibrium many-body model. In this model, focusing on the behavior along the direction
transverse to the external driving force, we numerically measure transport coefficients and dynamical fluctua-
tions outside the linear response regime far from equilibrium. Using these quantities, we find the validity of the
Einstein relation, the Green-Kubo relation and the fluctuation-response relation.
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In order to construct a theoretical framework of nonequi-
librium statistical mechanics, we seek new universal rela-
tions characterizing nonequilibrium steady states �NESS� far
from equilibrium. For this purpose, we carry out numerical
computations through which we study the validity of certain
fluctuation-dissipation relations. In this paper, we consider
one such model, a simple stochastic nonequilibrium many-
body model which is called a “driven lattice gas �DLG�”
�1,2�.

Model Let �i be an occupation variable defined on each
site i= �ix , iy� of a two-dimensional square lattice ��ix , iy� �0
� ix�L ,0� iy �L�. The variable �i is 1 if the ith site is
occupied by a particle, and 0 if it is unoccupied. Periodic
boundary conditions are imposed by setting �i=� j, where j
= �L , iy� in the case ix=0, and �i=� j, where j= �ix ,L� in the
case iy =0. The array of all occupation variables, ��i�, is de-
noted � and called the “configuration.”

The time evolution of � is described by the following
rule: At each time step, randomly choose a nearest-neighbor
pair �i , j	, and exchange the values of �i and � j with the
probability c�i , j ;��= �1+exp��Q��→�ij���−1, where �ij is
the configuration obtained from � through this exchange,
and �=1/T is the inverse temperature with the Boltzmann
constant set to unity. Q��→�ij� represents the heat absorbed
from the heat bath as a result of the configuration change
�→�ij. The total particle number, N=�i�i, is conserved
throughout the time evolution. The density �=N /L2 is a pa-
rameter of the model. Hereafter, we regard the unit of time to
be L2 time steps, which is the number of time steps for which
an arbitrary site is chosen once on average. We refer to this
time as 1 MCS �Monte Carlo step per site�.

In this paper, we study a two-dimensional DLG with

Q�� → ��� 
 H0���� − H0��� − Ejp�� → ��� , �1�

where E is an external driving force, and H0��� describes an
interaction between particles, written H0���
−��i,j	�i� j,
where �i , j	 denotes a nearest-neighbor pair. The quantity
jp��→��� is the spatially-averaged current, that is, the net

number of particles flowing in the x direction: jp��
→��� 
 �i��i�1−�i���i+�1,0�� �1−�i+�1,0�� −�i��1−�i��i+�1,0��1
−�i+�1,0�� ��. In this study, we fix �=0.5 in order for the system
to be far from the critical region �note that the critical tem-
perature of the model with E=0 is �c=1.76�, and choose
large values of E in order for the system to be far from
equilibrium.

Our aim. In DLGs, regarded as one of the simplest classes
of nonequilibrium models, statistical properties of NESS
have been investigated from various points of view. Among
them, there is an interesting report that a large deviation
functional of density fluctuations is shape dependent �3�. In a
two-dimensional DLG, although the general properties of
fluctuations are quite different from those of equilibrium
states, it was found numerically that a fluctuation relation
holds �4�, where we consider only properties along the direc-
tion transverse to the external force E. This fluctuation rela-
tion is a relation among density fluctuations, the chemical
potential �5,6�, and the temperature of the environment.

In equilibrium cases, the fluctuation relation is closely
related to fluctuation-dissipation relations, which relate dy-
namical properties of equilibrium fluctuations with transport
properties in the linear response regime �7�. Then noting that
the fluctuation relation holds in the DLG even far from equi-
librium �4�, we wish to also investigate the validity of
fluctuation-dissipation relations far from equilibrium, and de-
termine if their equilibrium forms hold here as well.

In order to obtain such relations, we directly measure
transport coefficients and dynamical fluctuations in the direc-
tion transverse to the driving force E in the two-dimensional
DLG investigated above. In spite of the fact that these mea-
sured values differ from those for the equilibrium state �E
=0�, we numerically find that three fluctuation-dissipation
relations, the Einstein relation, the fluctuation-response rela-
tion, and the Green-Kubo relation, seem to be valid even for
NESS far from equilibrium.

Einstein relation. In the linear response regime near E
=0, the Einstein relation for interacting many-body systems
is written

D� = �T , �2�

where D is the density diffusion constant, � is the intensity
of density fluctuations, and � is the conductivity �8�.*Electronic address: hayashi@jiro.c.u-tokyo.ac.jp
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In order to investigate the validity of Eq. �2� in the direc-
tion transverse to the external driving force E �the y direc-
tion�, we first need to define the density diffusion constant D
as the coefficient of the diffusion term in the evolution equa-
tion describing the averaged behavior of a density field in
this direction. In this paper, we consider the case in which we
have prepared as the initial state, a steady state under the
perturbation potential

V�iy� = 	 sin
2
iy

L
�3�

which is obtained by adding �i�iV�iy� to H0���. Then, we
remove V�iy� at t=0 in order to measure the relaxation of the
density field �̂�t�. The function �̂�t� is the Fourier transform
of the coarse-grained density ��iy�. These quantities
are defined as �̂�t�
�iy=1

L ��iy�sin�2
iy /L�, and ��iy�

�1/L��i��iy

�i, where �iy
= ��ix , iy� �1� ix�L , iy�.

In Fig. 1, choosing 	 as a sufficiently small value,
ln�−��̂�t�	E

V /	� is plotted as a function of t in the case
�� ,E�= �0.5,10� with L=32 and 	=−0.2. Here, �	E

V repre-
sents the statistical average under the relaxation process. Be-
cause exponentially decaying behavior of ��̂�t�	E

V is observed,
D can be estimated from the form

��̂�t�	E
V = �const� � e−D�2
/L�2t. �4�

In the inset of Fig. 1, D is plotted as a function of the system
size L in the cases E=0 and E=10, with �=0.5. Because
both values of D seem to converge, we conclude that the size
L=40 can be regarded as sufficiently large to study the sta-
tistical properties of macroscopic quantities in our model. It
is important to note here that the values of D in the case E
=10 are different from those in the case E=0.

Next, we define the conductivity � by adding a suffi-
ciently small perturbativeg driving force  in the y direction.
This is realized by adding the term jt��→��� to Q��
→��� in Eq. �1�,where

jt�� → ��� 
 �
i

��i�1 − �i���i+�0,1�� �1 − �i+�0,1��

− �i��1 − �i��i+�0,1��1 − �i+�0,1�� �� . �5�

Note that in the x direction, the particles are still driven by E.

Then, the averaged current J̄ in the y direction is defined as

J̄ 

1

L
�jt�� → ���	s

E,. �6�

Using this J̄, the conductivity � is written

� 
 lim
→0

J̄


. �7�

In the inset of Fig. 2, � is plotted as a function of the system
size, L, in the cases E=0 and E=10 with �=0.5. Note that
the values of � in the case E=0 are smaller than those in the
case E=10, and that qualitatively, this difference is not the
same as that seen for D.

We previously measured the intensity of density fluctua-
tions �
L�����

2	s
E− ����	s

E�2�, where ��
�i���
�i / ���� and

��= ��ix , iy� �1� ix�L ,L /2−� /2−1� iy �L /2+� /2�. �See
Fig. 4 in Ref. �4�.� Note that � is chosen so that it satisfies
����L, where � is a correlation length. Using these values
of �, in Fig. 2, we plot �T as a function of D� in the cases
�� ,E�= �0.5,10�, �0.4,10�, �0.3,10�, �0.5,3�, and �0.5,0�. Not-
ing that the thin-dotted line represents D�=�T, we find that
even though the values of D ,� and � are different from those
in the equilibrium case, along the direction transverse to the
driving force E, the Einstein relation �2� is valid, within the
precision of the numerical computations.

Fluctuation-response relation. We next study in the
fluctuation-response relation, which is also a representative
universal relation in the linear response theory. Again in this
case, we focus on the properties of the system in the direc-
tion transverse to the driving force E.

FIG. 1. The quantity ln�−��̂�t�	E,
V /	� plotted as a function of t in

the case �� ,E�= �0.5,10�, with 	=−0.2,L=32. From the slope of
the line, −0.004t+1.44,D is estimated as 0.004=D�2
 /L�2. The
inset displays the L dependence of D. The triangles and circles
correspond to �� ,E�= �0.5,10� and �0.5,0�, respectively.

FIG. 2. �T as a function of D�. The triangle, square, star, plus,
and circle correspond to �� ,E�= �0.5,10�, �0.4,10�, �0.3,10�, �0.5,3�,
and �0.5, 0�. The error bars represent the statistical errors arising
from the fitting when D is measured. The thin-dotted line represents
D�=�T. The inset displays the L dependence of �. The triangles
and circles correspond to �� ,E�= �0.5,10� and �0.5, 0�, respectively.
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First, we employ the same procedure as in the measure-
ment of D to introduce a time-dependent response function
R�t�. That is, we prepare the steady state under the perturba-
tion V�iy� and then remove this perturbation at t=0. Because
the profile of the coarse grained density ��iy� is changed by
the removal of V�iy�, we make this change explicit by defin-
ing R�t� in the following form:

R�t� 
 −
��̂�t�	E

V

L	
. �8�

We remark that the decaying behavior of R�t� in the case E
=10 is plotted as that of −��̂�t�	E

V /	 in Fig. 1.
Next, we introduce the time correlation function of den-

sity fluctuations in the direction transverse to the driving
force:

C�t� 
 ��̂�t��̂�0�	s
E. �9�

In the inset of Fig. 3, ln C�t� is plotted as a function of time
in the case E=10, with �=0.5 and L=32. For the NESS,
C�t�, similar to R�t�, decays exponentially in time.

Here, in the equilibrium case �E=0�, using R�t� and C�t�,
the fluctuation-response relation is given by

C�t� = TR�t� . �10�

In the NESS far from equilibrium studied here, because R�t�
and C�t� exhibit a similar behavior, and because the fluctua-
tion relation, which is essentially the same as C�0�=TR�0�,
has previously been found to hold �4�, we conjecture that Eq.
�10� is valid.

To demonstrate its validity explicitly, in Fig. 3, in the case
E=10 with �=0.5 and L=32,R�t� is plotted as a function of
C�t� over the interval 0� t�800 MCS. It is seen that the
slope is equal to 1/T, within the precision of the numerical
computations.

Green-Kubo relation. Finally, again considering the prop-
erties along the direction transverse to the external driving
force �the y direction�, we investigate the validity of the

Green-Kubo relation for NESS far from equilibrium.
Using the spatially averaged current in the direction trans-

verse to the external driving force jt, defined in Eq. �5�, we
begin by the �-dependent current J�, which represents the net
number of particles that move in the y direction during a
time of � MCS,

J� 

1

�L2�
k=1

�L2

jt���k − 1� → ��k�� . �11�

Then, using this expression for J�, the intensity of the current
fluctuations is defined by

B� 

�L2

2
��J��2	s

E. �12�

In Fig. 4, B�� is plotted as a function of � in the cases E
=0 and E=10, with �=0.5 and L=32, respectively. It is seen
that in the case E=10, the line fitted for small times �but
much larger than the relaxation time of the current correla-
tions� deviates slightly for large times, while in the case E
=0, B�� and 0.050� are equal within the numerical precision
for all times. This bending behavior of B�� might reflect the
effect of a long time tail in this NESS.

In the case E=0, defining B as the slope of B��, the
Green-Kubo relation �8� can be written

B = �T . �13�

In the case E�0, we define B as the slope of B�� obtained
from the fitting in the early time regime. With this definition,
the size dependence of B in the cases E=0 and E=10 with
�=0.5 is plotted in the inset of Fig. 5. The difference be-
tween the values of B in the cases E=0 and E=10 is quali-
tatively the same as that for �.

Considering this similarity between � and B, in Fig. 5, we
plot �T as a function of B in the cases �� ,E�
= �0.5,0� , �0.5,10� , �0.5,3� , �0.4,10� , �0.3,10� with L=32.
The Green-Kubo relation �13� is valid for the NESS consid-
ered here. However, the deviation seen in Fig. 5 is somewhat
larger than that in Fig. 2.

Summary. In this paper, we have reported the results of

FIG. 3. R�t� plotted as a function of C�t� in the case �� ,E�
= �0.5,10�, with L=32 and 	=−0.2 over the interval 0� t
�800 MCS. The line represents R�t�=�C�t�, where T=2��=0.5�.
The error bars represent these of R�t�, because the uncertainty on
C�t� is smaller. In the inset, ln C�t� is plotted. The line there repre-
sents −0.00403t−1.31.

FIG. 4. B�� plotted as a function of � in the case �� ,E�
= �0.5,0� �the dotted line� and �� ,E�= �0.5,10� �the straight line�
with L=32. The thin line represents 0.050� and the thin dotted line
represents 0.055�. In the case E=10, it is seen that the line deviates
from the thin dotted line at large t MCS.
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numerical experiments on the two-dimensional DLG focus-
ing on the properties along the direction transverse to the
external driving force E. We find that the Einstein relation,
the fluctuation-response relation and the Green-Kubo rela-
tion hold in the NESS far from equilibrium. �Note that the

validity of the fluctuation relation for such a state was pre-
viously demonstrated in Ref. �4�.�

Compared with this validity of relations in the direction
transverse to the external driving force, we remark the prop-
erties along the direction parallel to the external driving
force. We studied a one-dimensional DLG, and found that
the phenomena observed along the direction parallel to the
external driving force seemed to be more complicated than
those observed along the direction transverse to the external
driving force �9�.

We end with some discussion of the detailed balance of
fluctuations, which has a deep connection with the validity of
universal relations in the linear response regime near equi-
librium states. In our DLG, the detailed balance condition for
c�i , j ;�� does not hold in the case E�0. However, the nu-
merical confirmation of the universal relations presented here
suggests the detailed balance of macroscopic fluctuations.
We point out that, with regard to this topic, Gabielli et al.
studied a stochastic model for which the detailed balance
condition does not hold, and derived the Onsager’s reciproc-
ity, which is also the linear response relations for macro-
scopic quantities �10�.
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